ADICHUNCHANAGIRI UNIVERSITY

18EC32

Third Semester BE Degree Examination January 2020 (CBCS Scheme)

Time: 3 Hours Max Marks: 100 Marks

Sub: ANALOG ELECTRONICS

Instructions: 1. Answer

- 1. Answer five full questions
- 2. Choose one full question from each module
- 3. Your answer should be specific to the questions asked
- 4. Write the same question numbers as they appear in this question paper
- 5. Write Legibly.

Module -1

1	a Define h-parameter. Draw the h-parameter model of a CE configuration.			M		
	b	Derive an expression for I_B , I_C and V_{CE} for voltage divider bias using exact analysis.	10	M		
	Or					
2	a	Derive an expression for Av, Zi, Zo for Emitter follower using re model	10	M		
	b	A voltage divider biased circuit has Rc=4K Ω , R _E =1.5K Ω , R ₁ =39K Ω , R2=3.9K Ω Vcc=18V and β =70. Find Ic,V _{CE} .	10	M		

Module -2

- 3 a Explain high frequency response of FET amplifier and derive an expression 10 M for cut off frequencies defined by input and output circuits.
 - b Determine the lower cut off frequency for the FET amplifier using the following parameters $C_G=0.01\mu F, C_C=0.5~\mu F, C_S=2~\mu F~Rsig=10K\Omega$, $R_G=1M\Omega,~R_D=4.7K\Omega, Rs=1K\Omega, R_L=2.2K\Omega,~I_{DSS}=8mA, Vp=-4v$ $r_{d=}\infty\Omega, V_{DD}=20V, V_{GSQ}=-2V, I_{DQ}=2mA$

Or

- 4 a Derive an expression for Zi and Zo, Av for self-bias configuration for 10 M JFET.
 - The fixed-bias configuration of FET amplifier had an operating point defined by V_{GSQ} = -2 V and I_{DQ} = 5.625 mA, with I_{DSS} = 10 mA and VP = -8 V. The network is shown below with an applied signal Vi Yos=40 μ S.

Module -3

5	a	Explain CS amplifier with necessary circuit and equations with and without source resistance		M						
	b	From small signal operation of an amplifier derive an expression for DC bias point, signal current in Drain terminal (i _D), voltage gain and trans conductance	08	M						
	Or									
6	a	With neat diagram and small signal model of common drain amplifier prove that Avo=1,Gv=1								
	b	Explain the different types of internal capacitances in MOSFET and explain the gate capacitive effect.								
Module -4										
7	a	For a voltage series feedback amplifier topology. obtain an expression for Av, Rif and Rof also explain the practical feedback circuit using voltage series feedback.	10	M						
	b	with neat circuit diagram explain the working of series resonant crystal oscillator. A crystal oscillator has L=0.334H, C=0.065pF, $C_{\rm M}$ =1pF, R=5.5K Ω calculate its series and parallel resonating frequency.	10	M						
		Or								
8	a b	What are tuned oscillators? Explain the two types of tuned oscillators. Briefly explain Barkhausen criterion for oscillations and explain RC phase shift oscillator with necessary circuit and equations.	10 10	M M						
		Module -5								
9	a	Explain the working of class B push pull power amplifier. Derive an expression for its efficiency S T η =78.4%	10	M						
	b	Derive an expression for second harmonic distortion in power amplifier using 3-point method.	10	M						
		Or								
10	a	With neat circuit diagram explain the operation of a series-fed class A power amplifier and prove that η =25%.	10	M						
	b	Briefly explain the series voltage regulator. Calculate the output voltage and the Zener current in the regulator circuit of Figure shown below for $R_L = 1 K \Omega$	10	M						

.